Down FORWARD AND INVERSE DISPLACEMENT ANALYSIS OF A NOVEL THREE- LEGGED MOBILE ROBOT BASED ON THE KINEMATICS OF IN-PARALLEL MANIPULATORS

نویسندگان

  • Ping Ren
  • Ivette Morazzani
  • Dennis Hong
چکیده

This paper presents the forward and inverse displacement analysis of a novel three-legged walking robot STriDER (Selfexcited Tripedal Dynamic Experimental Robot). STriDER utilizes the concept of passive dynamic locomotion to walk, but when all three feet of the robot are on the ground, the kinematic structure of the robot behaves like an in-parallel manipulator. To plan and control its change of posture, the kinematics of its forward and inverse displacement must be analyzed. First, the concept of this novel walking robot and its unique tripedal gait is discussed including strategies for changing directions, followed by the overall kinematic configuration and definitions of its coordinate frames. When all three feet of the robot are on the ground, by assuming there are no slipping at the feet, each foot contact point are treated as a spherical joint. Kinematic analysis methods for in-parallel manipulators are briefly reviewed and adopted for the forward and inverse displacement analysis for this mobile robot. Both loop-closure equations based on geometric constraints and the intersection of the loci of the feet are utilized to solve the forward displacement problem. Closed-form solutions are identified and discussed in the cases of redundant sensing with displacement information from nine, eight and seven joint angle sensors. For the non redundant sensing case using information from six joint angle sensors, it is shown that closed-form solutions can only be obtained when the displacement information is available from non-equally distributed joint angle sensors among the three legs. As for the case when joint angle sensors are equally distributed among the three legs, it 1. Address all correspondence to this author. loaded From: http://proceedings.asmedigitalcollection.asme.org/ on 05/02/2015 will result in a 16th-order polynomial of a single variable. Finally, results from the simulations are presented for both inverse displacement analysis and the non redundant sensing case with equally distributed joint angle sensors. It was found that at most sixteen forward displacement solutions exist if displacement information from two joint angle sensors per leg are used and one is not used.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Instantaneous Kinematics and Singularity Analysis of a Novel Three-legged Mobile Robot with Active S-r-r-r Legs

1 Copyright © 2008 by ASME 1. Address all correspondence to this author. ABSTRACT STriDER (Self-excited Tripedal Dynamic Experimental Robot) is a unique three-legged walking robot that utilizes its innovative tripedal gait to walk. Previous work on the kinematic analysis of STriDER mainly focused on solving the forward and inverse displacement problems. As a continuation, this paper addresses t...

متن کامل

Kinematic Analysis of General Planar Parallel Manipulators

A kinematic mapping of planar displacements is used to derive generalized constraint equations having the form of ruled quadric surfaces in the image space. The forward kinematic problem for all three legged, three degree of freedom planar parallel manipulators thus reduces to determining the points of intersection of three of these constraint surfaces, one corresponding to each leg. The invers...

متن کامل

A novel three degrees of freedom partially decoupled robot with linear actuators

(2012). A novel three degrees of freedom partially decoupled robot with linear SUMMARY In this work, a new translational robot formed with two different parallel manipulators with a common control point is introduced. An asymmetric parallel manipulator provides three translational degrees of freedom to the proposed robot while the orientation of the end-effector platform is kept constant by mea...

متن کامل

Application of Wavelet Neural Network in Forward Kinematics Solution of 6-RSU Co-axial Parallel Mechanism Based on Final Prediction Error

Application of artificial neural network (ANN) in forward kinematic solution (FKS) of a novel co-axial parallel mechanism with six degrees of freedom (6-DOF) is addressed in Current work. The mechanism is known as six revolute-spherical-universal (RSU) and constructed by 6-RSU co-axial kinematic chains in parallel form. First, applying geometrical analysis and vectorial principles the kinematic...

متن کامل

Displacement Analysis of Spherical Mechanisms Having Three or Fewer Loops

Spherical linkages, having rotational joints whose axes coincide in a common center point, are sometimes used in multi-degree-of-freedom robot manipulators and in onedegree-of-freedom mechanisms. The forward kinematics of parallel-link robots, the inverse kinematics of serial-link robots and the input/output motion of single-degree-offreedom mechanisms are all problems in displacement analysis....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007